Prof. William Bialek, Princeton University

Physics Faculty,room Physics 001 at 14:30

3 May, 2011

Statistical mechanics of real biological networks

 

Many of life’s most fascinating phenomena emerge from interactions among many elements – many amino acids determine the structure of a single protein, many genes determine the fate of a cell, many neurons are involved in shaping our thoughts and memories.  Physicists have long hoped that these collective behaviors could be described using the ideas and methods of statistical mechanics.  In the past few years, new, larger scale experiments have made it possible to construct statistical mechanics models of biological systems directly from real data, using maximum entropy methods.  I’ll describe the surprising successes of this “inverse” approach, using examples form families of proteins, networks of neurons, and flocks of birds.  Remarkably, in all these cases the models that emerge from the data are poised at a very special point in their parameter space – a critical point.   This suggests there may be some deeper theoretical principle behind the behavior of these diverse systems.

 
Click to print this pagePrint page
Click to send this page to a colleagueSend to a friend
  Home   Site map
  Search NBR site         
Search Technion Web Site (Google Search)

Copyright © 2008 LS & E Infrastructure Unit. Part of the Lokey Center Websites. All Rights Reserved. Created by Catom web design